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Abstract:  

Early biomarkers are needed to identify individuals at high risk of preclinical Alzheimer’s 

disease and to better understand the pathophysiological processes of disease progression. 

Preclinical Alzheimer’s disease electroencephalography (EEG) changes would be non-invasive 

and cheap screening tools and could also help to predict future progression to clinical 

Alzheimer’s disease. However, the impact of amyloid-beta deposition and neurodegeneration 

on EEG biomarkers needs to be elucidated. We included participants from the INSIGHT-preAD 

cohort, which is an ongoing single-center multimodal observational study, that was designed to 

identify risk factors and markers of progression to clinical Alzheimer’s disease in 318 

cognitively normal individuals aged 70–85 years with a subjective memory complaint. We 

divided the subjects into four groups, according to their amyloid status (based on 18F-florbetapir 

PET) and neurodegeneration status (evidenced by ¹⁸F-fluorodeoxyglucose PET brain 

metabolism in Alzheimer’s disease-signature regions). The first group was amyloid positive 

and neurodegeneration positive, which corresponds to stage 2 of preclinical Alzheimer’s 

disease. The second group was amyloid positive and neurodegeneration negative, which 

corresponds to stage 1 of preclinical Alzheimer’s disease. The third group was amyloid negative 

and neurodegeneration positive, which corresponds to “suspected non-Alzheimer’s 

pathophysiology”. The last group was the control group, defined by amyloid negative and 

neurodegeneration negative subjects. We analysed 314 baseline 256-channel high-density eyes-

closed 1-minute resting-state EEG recordings. EEG biomarkers included spectral measures, 

algorithmic complexity and functional connectivity assessed with a novel information-theoretic 

measure, weighted symbolic mutual information. The most prominent effects of 

neurodegeneration on EEG metrics were localized in fronto-central regions with an increase in 

high-frequency oscillations (higher beta and gamma power) and a decrease in low-frequency 

oscillations (lower delta power), higher spectral entropy, higher complexity and increased 

functional connectivity measured by weighted symbolic mutual information in theta band. 

Neurodegeneration was associated to a widespread increase of median spectral frequency. We 

found a non-linear relationship between amyloid burden and EEG metrics in neurodegeneration 

positive subjects, either following a U-shape curve for delta power or an inverted U-shape curve 

for the other metrics, meaning that EEG patterns are modulated differently depending on the 

degree of amyloid burden. This finding suggests initial compensatory mechanisms that are 

overwhelmed for the highest amyloid load. Together, these results indicate that EEG metrics 

are useful biomarkers for the preclinical stage of Alzheimer’s disease. 
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Introduction 

Alzheimer’s disease (AD) is the most common form of dementia, as it accounts for an estimated 

60 to 80 percent of cases. The pathophysiological process of AD begins many years before the 

onset of symptoms (Bateman et al., 2012; Villemagne et al., 2013). It is essential to diagnose 

AD as early as possible because patients will be more likely to benefit from disease modifying 

treatments if treated early in the disease course, before major brain damage has occurred 

(Sperling et al., 2011). It is therefore important to develop biomarkers that are sensitive to this 

early, “preclinical” stage of AD even before mild cognitive impairment (MCI) occurs. At the 

preclinical stage subjects are cognitively unimpaired but show evidence of cortical amyloid-β 

(Aβ) deposition which is considered to be the most upstream process in the pathological cascade 

of AD (Jack et al., 2013) and is measured by amyloid PET or decreased amyloid-β1-42 and 

amyloid-β1-42 / amyloid-β1-40 ratio in the CSF. Aβ deposition can be associated to pathologic tau 

deposits, measured by tau PET or elevated CSF phosphorylated tau and to neurodegeneration 

that is revealed by elevated CSF total tau, ¹⁸F-fluorodeoxyglucose (¹⁸F-FDG) PET 

hypometabolism in an AD-like pattern and atrophy on MRI (Jack et al., 2018). Biomarkers for 

AD are important not only for identifying individuals at high risk of preclinical AD, but also to 

better understand the pathophysiological processes of disease progression.  



The Investigation of Alzheimer’s Predictors in Subjective Memory Complainers 

(INSIGHT-preAD) study is an ongoing longitudinal observational study which was designed 

to identify risk factors and markers of progression to clinical AD in 318 cognitively normal 

(CN) individuals with a subjective memory complaint (Dubois et al., 2018). Among the several 

multimodal assessments, EEGs were performed every 12 months. In our study we focused on 

the analysis of baseline EEG, aiming to identify electrophysiological biomarkers, including 

functional connectivity (FC), that are sensitive to the preclinical stage of AD. EEG has many 

advantages as it is a non-invasive, cheap and reproducible technique, that directly measures 

neural activity with a good temporal resolution. 

There is already a rich literature on the use of EEG biomarkers in MCI and AD, such as 

spectral measures and synchronization between brain regions (Babiloni et al., 2016). Patients 

with AD or MCI usually show slowing of oscillatory brain activity, reduced EEG complexity 

and reduced synchrony (Grunwald et al., 2001; Jeong, 2004; Babiloni et al., 2010; Stam, 2010). 

Decreased alpha power correlated with hippocampal atrophy and lower cognitive status 

(Babiloni et al., 2006, 2009; Luckhaus et al., 2008). Growing evidence show that AD targets 

cortical neuronal networks related to cognitive functions, which is revealed by the impairment 

in FC in long range networks (Babiloni et al., 2016). There are several types of measures of FC 

using EEG or magnetoencephalography (MEG) including spectral coherence, synchronization 

likelihood or information theory indexes. A decrease of alpha coherence, an increase of delta 

total coherence and an abnormal alpha fronto-parietal coupling have been described in AD 

(Jelic et al., 2000; Babiloni et al., 2009). A reduction of alpha and beta synchronization 

likelihood was shown in MCI and AD (Stam et al., 2003). However, the usefulness of EEG 

characteristics as biomarkers for the evaluation of preclinical AD is not yet fully established, 

as most studies have focused on EEG biomarkers at later stages of the disease, after the onset 

of symptoms. One recent study of the preclinical and prodromal stages of AD using MEG 

demonstrated that the effects of Aβ deposition were expressed as a prefrontal alpha power 

increment (Nakamura et al., 2018). An EEG study in older people with subjective memory 

complaints found no association between cortical amyloid load and FC (Teipel et al., 2018), 

whereas another study using MEG in CN individuals at risk for AD showed altered FC in the 

default mode network (DMN) (Nakamura et al., 2017). These results suggest that spectral 

power and FC, as measured by MEG or EEG, could potentially be sensitive biomarkers for the 

preclinical stage of AD, but more studies are needed in this field. Moreover, very few studies 

of early stages of AD consider neurodegeneration information when selecting subjects, whereas 



it has been suggested that studies combining an abnormal amyloid biomarker with an abnormal 

neurodegeneration biomarker provide much more powerful prediction of future cognitive 

decline and conversion to clinical AD than studies focusing on an abnormal amyloid status 

alone (Knopman et al., 2013; Vos et al., 2013; Wirth et al., 2013; Mormino et al., 2014; Toledo 

et al., 2014; Burnham et al., 2016; Soldan et al., 2016).  

Our aim was to analyse EEG changes that take place in subjects at high risk of 

preclinical AD and to assess the impact of amyloid load and AD topography-specific 

neurodegeneration on EEG metrics. In order to evaluate if EEG metrics’ changes were a 

consequence of neurodegeneration, amyloid burden, or a combination of the two, we divided 

the whole INSIGHT-preAD cohort into four groups of subjects depending on their amyloid 

status (evidenced by 18F-florbetapir PET) and neurodegeneration status (revealed by ¹⁸F-FDG 

PET). The first group was amyloid positive and neurodegeneration positive (A+N+), which 

corresponds to stage 2 of preclinical AD according to (Sperling et al., 2011). The second group 

was amyloid positive and neurodegeneration negative (A+N-), which corresponds to stage 1 of 

preclinical AD according to (Sperling et al., 2011). These first two groups belong to 

Alzheimer’s disease continuum according to (Jack et al., 2018). The third group was amyloid 

negative and neurodegeneration positive (A-N+), which corresponds to “suspected non-

Alzheimer’s pathophysiology” (SNAP) (Jack et al., 2012). The last group was the control 

group, defined by amyloid negative and neurodegeneration negative subjects (A-N-). We 

hypothesized that amyloid positive and/or neurodegeneration positive subjects would present 

specific EEG patterns and FC differences compared to controls. Moreover, we hypothesized 

that these EEG patterns would be modulated differently depending on the degree of severity of 

amyloid burden or hypometabolism. 

To assess functional connectivity, we used weighted symbolic mutual information 

(wSMI) which is a novel measure to quantify global information sharing that was introduced to 

index consciousness in patients recovering from a coma (King et al., 2013). The advantages of 

this information-theoretic measure are its robustness to common-source EEG artifacts and its 

ability to easily detect non-linear coupling. We decided to focus on wSMI in theta (4-8Hz) and 

alpha (8-12Hz) bands as the dominant resting state rhythms are typically observed at theta and 

alpha frequencies and these rhythms show maximum changes in AD patients (Blinowska et al., 

2017); moreover, wSMI was shown to better discriminate between different states of 

consciousness in the theta band (King et al., 2013; Sitt et al., 2014).  



The main objective of our research was to identify resting state EEG biomarkers of 

preclinical AD and SNAP and to evaluate the impact of amyloid burden and neurodegeneration 

on EEG metrics. Electrophysiological biomarkers included spectral measures, algorithmic 

complexity and FC assessed with wSMI. The other aims were the exploration of cofactors 

involved in EEG metrics differences between the two groups, including apolipoprotein E 

(ApoE) genotype, age, gender, educational level and hippocampal volume. 

Materials and methods 

INSIGHT-preAD study design and participants 

Participants were recruited in the INSIGHT-preAD study cohort at Pitié-Salpêtrière University 

Hospital, Paris, France. The INSIGHT-preAD study has already been thoroughly described by 

(Dubois et al., 2018). This cohort currently includes baseline data of 318 CN individuals, 

between 70 and 85 years old, with subjective memory complaints and unimpaired cognition 

(Mini Mental State Examination [MMSE] score⩾27 and Clinical Dementia Rating score 0), no 

evidence of episodic memory deficit (Free and Cued Selective Reminding Test [FCSRT] total 

recall score⩾41). Demographic, cognitive, functional, biological, genetic, genomic, imaging 

including brain structural and functional MRI, 18F-FDG PET and 18F-florbetapir PET, 

electrophysiological and other assessments were performed at baseline and regularly during 

follow-up. EEGs were performed every 12 months. 

The ethics committee of the Pitié-Salpêtrière University Hospital approved the study 

protocol. Written informed consent according to the Declaration of Helsinki was provided by 

all participants.  

INSIGHT-EEG study participants 

On the total of 318 subjects of the INSIGHT-preAD cohort, we analysed baseline EEGs of 314 

subjects because the EEG data of three subjects was rejected due to excessive EEG artifacts 

and one subject did not undergo 18F-FDG PET. Based on amyloid status (evidenced by 18F-

florbetapir PET) and neurodegeneration status (evidenced by 18F-FDG PET brain metabolism 

in AD-signature regions), we classified the subjects into four groups : A+N+, A+N-, A-N+ and 

A-N- (control group).  

http://brain.oxfordjournals.org/sites/default/files/pdf/Helsinki.pdf


PET acquisition and processing 

PET scans were acquired 50 min after injection of 370 MBq (10 mCi) ¹⁸F-florbetapir or 30 min 

after injection of 2 MBq/kg ¹⁸F-FDG. Reconstructed images were analysed with a pipeline 

developed by the Centre d’Acquisition et Traitement des Images (http://cati-

neuroimaging.com) (Supplementary material). A ¹⁸F-florbetapir-PET standardized uptake 

value ratio (SUVR) threshold of 0.7918 was used to dichotomize subjects into amyloid positive 

and negative groups (Dubois et al., 2018; Habert et al., 2018).  

The same image-assessment pipeline was applied to measure brain glucose metabolism 

on ¹⁸F-FDG PET scans. Cortical metabolic indices were calculated in four bilateral regions of 

interest that are specifically affected by AD (Jack et al., 2012): posterior cingulate cortex, 

inferior parietal lobule, precuneus, and inferior temporal gyrus, and the pons was used as the 

reference region. Calculation of the neurodegeneration cut-off value is detailed in 

Supplementary material. In the INSIGHT-preAD study, subjects were considered 

neurodegeneration positive if the mean ¹⁸F-FDG PET SUVR of the 4 AD-signature regions was 

below 2.27.  

EEG acquisition and processing 

EEG data were acquired with a high-density 256-channel EGI system (Electrical Geodesics 

Inc., USA) with a sampling rate of 250 Hz and a vertex reference. During the recording, patients 

were instructed to keep awake and relaxed. The total length of the recording was 2 minutes, 

during which participants alternated 30 seconds segments of eyes-closed and eyes-open 

conditions. 60 seconds of eyes-closed resting-state recording were selected for the analysis. For 

EEG data processing we used a pipeline that automates processing of EEG recordings with 

automated artifact removal and extraction of EEG measures (Sitt et al., 2014; Engemann et al., 

2015, 2018). A band-pass filtering (from 0.5 to 45 Hz) and a notch filter at 50 Hz and 100 Hz 

were applied. Data were cut into 1 second epochs. Bad channels and bad epochs were rejected 

with a procedure that is detailed in Supplementary material. 

Calculation and analysis of EEG metrics  

We analysed 314 high-density 256-channel EEG recordings from INSIGHT-preAD baseline 

data. For the calculation of EEG metrics, we analysed the values of the first 224 electrodes 

which are the scalp (non-facial) electrodes. For each recording, we extracted a set of measures 

organized according to a theory-driven taxonomy (Sitt et al., 2014). Power spectral density 

http://cati-neuroimaging.com)/
http://cati-neuroimaging.com)/


(PSD), median spectral frequency (MSF) and spectral entropy measure dynamics of brain signal 

at single electrode site and are based on spectral frequency content. Algorithmic complexity 

estimates the complexity of a signal based on its compressibility. It measures dynamics of brain 

signal at single electrode site and is based on information theory. wSMI is also an information-

theoretic metric and estimates FC between brain regions. For our main analysis, we calculated 

10 EEG metrics: PSD in delta (1-4 Hz), theta (4-8 Hz), alpha (8-12 Hz), beta (12-30 Hz), gamma 

(30-45 Hz), MSF, spectral entropy, algorithmic complexity, wSMI in theta and alpha band. The 

EEG metrics were averaged across all epochs (60 seconds recording). PSD was normalized as 

described in (Sitt et al., 2014). In a supplementary analysis, we compared the results of FC 

measured by wSMI to two additional “traditional” FC metrics, which are Phase Locking Value 

(PLV) and weighted Phase Lag Index (wPLI) (Supplementary material). All markers were 

computed using NICE (https://github.com/nice-tools/nice) and MNE-Python 

(https://github.com/mne-tools/mne-python). The collection of scripts used are publicly 

available.1 

Statistical analysis 

Statistical analyses were performed using R software, version 3.5.0. We compared baseline 

characteristics between the four groups using one-way ANOVA for continuous variables and 

χ2 test for categorical variables. When global test was significant, post hoc Tukey test was 

performed for continuous variables and pairwise χ2 test with Benjamini-Hochberg correction 

for categorical variables, to determine which groups differed from each other. 

Local regression of average EEG metrics in function of amyloid SUVR and FDG SUVR 

First, we used local regression (LOESS) to study the relationship between average EEG metrics 

(mean value across all scalp electrodes), mean amyloid SUVR and mean 18F-FDG SUVR. 

EEG metrics analysis 

To study the impact of amyloid load, brain metabolism, age, gender, educational level, ApoE4 

and hippocampal volume on EEG metrics, we performed two types of analyses. The first 

analysis was on the mean value of each metric across all scalp (non-facial) electrodes. The 

second one was on the value of each metric at each scalp electrode so there were 224 values for 

                                                           
1 URL will be made available upon request and upon acceptance of the article. 



each metric per participant. For wSMI, connectivity measures were summarized by calculating 

the median value from each electrode to all the other electrodes.  

Multiple models were performed to evaluate the impact of main effects and interactions. 

Type II tests were performed. P-values were corrected for multiple testing on 10 measures with 

the Benjamini-Hochberg False discovery rate (BH-FDR) procedure.  

For the analysis of average EEG metrics, multiple linear regressions were performed. 

Simple linear regressions were first performed to evaluate if amyloid load or brain metabolism 

should be included as categorical variables (A+, A-, N+, N-) or as continuous variables 

(amyloid SUVR, mean 18F-FDG SUVR), by maximizing the coefficient of determination R2, 

depending on the EEG metrics. The effects of interest were included in multiple models as well 

as interaction between amyloid load and brain metabolism.  

For the analysis of the value of each metric at each electrode, linear mixed models were 

performed with the effects of interest as fixed effects as well as the electrode number, and the 

subject as random effect. Interactions between amyloid load, brain metabolism and electrode 

number were included in the models as well as all two-way interactions between these three 

effects. We performed a cluster-based permutation test with a threshold-free cluster 

enhancement (TFCE) method (Smith and Nichols, 2009) to correct for multiple comparisons 

on 224 electrodes and to see which electrodes showed statistically significant differences for 

pairwise comparisons between the following groups: A+N+ versus A-N-, A+N- versus A-N-, 

A-N+ versus A-N-, A+ versus A- and N+ versus N-. Cluster-based permutation test is detailed 

in Supplementary methods. We generated scalp topographical maps using MNE-Python 

(Gramfort et al., 2013). 

FC analysis at source level 

In order to provide anatomically based interpretation of neural activity, we did a source level 

FC analysis on a representative sample of the four groups of participants (Supplementary 

material).   

Data availability 

The data that support the findings of this study are available from the corresponding author, 

upon reasonable request. 



Results 

Population baseline characteristics analysis 

The mean age of all participants was 76.1 years (SD 3.5) and 67.8% of the participants had a 

high educational level (Table 1). There were no differences between the four groups for age 

and educational level. There were more women in A-N- (66.3%) and A+N- (74.6%) groups 

compared to A+N+ group (36.0%). The proportion of ApoE4 carriers was higher in A+N+ and 

A+N- groups than in A-N+ and A-N- groups (44.0% and 34.9% versus 5.9% and 14.3%, 

respectively). The four groups did not differ for cognitive scores except for the FCSRT delayed 

free recall where A+N+ group had significantly lower scores than A+N- and A-N- groups (10.4 

[SD 2.5] vs 11.8 [SD 2.3] and 12.0 [SD 2.1], respectively). The mean ¹⁸F-FDG PET SUVR was 

2.2 (SD 0.1) in A+N+ group, 2.2 (SD 0.1) in A-N+ group, 2.5 (SD 0.2) in A+N- group and 2.6 

(SD 0.2) in A-N- group. The mean amyloid SUVR was 1.1 (SD 0.2) in A+N+ group, 1.0 (SD 

0.2) in A+N- group, 0.7 (SD 0.1) in A-N+ group and 0.7 (SD 0.1) in A-N- group. The total 

hippocampal volume measured on structural MRI was significantly lower in A+N+ subjects 

compared to A-N- subjects (2.6 [SD 0.2] vs 2.8 [SD 0.3], respectively). 

Local regression of average EEG metrics on amyloid SUVR and FDG SUVR 

As first exploratory step, we used local regression to study the relationship between average 

EEG metrics and mean amyloid SUVR (Fig. 1) and mean 18F-FDG SUVR (Fig. 3).  

The relationship between amyloid SUVR and PSD delta followed a U-shape curve 

whereas the relationship between amyloid SUVR and PSD beta, PSD gamma, MSF, spectral 

entropy and complexity followed an inverted U-shape curve. Amyloid SUVR inflection points 

values were between 0.96 and 0.98 for all the previous EEG measures. The relationship was 

less clear between amyloid burden, PSD alpha and PSD theta. The degree of severity of amyloid 

load did not seem to have an impact on wSMI theta and wSMI alpha. To better understand the 

relationship between amyloid load and EEG metrics we did local regression of average EEG 

metrics on amyloid SUVR first for N+ subjects only (Fig. 2) and second for N- subjects only 

(Supplementary Fig. 1). Interestingly, in N+ subjects, local regression of EEG metrics on 

amyloid SUVR showed much more obvious inverted U-shape curves for intermediate to very 

high amyloid load than the previous regression on the whole cohort, for PSD beta, PSD gamma, 

MSF, spectral entropy, complexity and also for wSMI theta. Moreover, in N+ subjects, the 

relationship between PSD delta and amyloid SUVR followed a more pronounced U-shape 



curve. After exceeding a certain level of amyloid load, complexity, spectral entropy, MSF, PSD 

beta, PSD gamma and wSMI theta decreased markedly and PSD delta increased noticeably. 

Amyloid burden did not show any noticeable effect on EEG measures in N- subjects 

(Supplementary Fig.1). To summarize, the degree of severity of amyloid burden had a strong 

impact on EEG metrics in the presence of neurodegeneration, with increased high-frequency 

oscillations for intermediate amyloid burden and a slowing of brain oscillations for high to very 

high amyloid load.  

Local regression of average EEG metrics on mean 18F-FDG SUVR (Fig. 3) showed a 

trend towards increased complexity, PSD beta, PSD gamma, spectral entropy, MSF and wSMI 

theta and decreased PSD delta when brain metabolism decreased. The relations between brain 

metabolism, PSD alpha and PSD theta were less clear. The level of brain metabolism did not 

seem to have an impact on wSMI alpha. Similar trends were found in local regression of EEG 

metrics on 18F-FDG SUVR separately for A+ and A- subjects (Supplementary Fig. 2 and 

Supplementary Fig. 3). Thus, as a main effect, neurodegeneration in AD-signature regions 

seemed to increase high-frequency oscillations, complexity, spectral entropy and FC measured 

by wSMI theta, except when neurodegeneration was associated to very high amyloid load, 

where the trend of EEG metrics reversed.  

Multiple linear regression of average EEG metrics in function of amyloid load and 

brain metabolism 

We did multiple linear regression of average EEG metrics on all scalp electrodes to assess the 

impact of amyloid load and brain metabolism on EEG measures, adjusting on the following 

potential confounding variables: age, gender, education level, ApoE4 status and hippocampal 

volume (Table 2).  

 We studied the impact of brain metabolism on EEG metrics (Table 2 and Fig. 4). N+ 

subjects had higher PSD gamma and higher MSF than N- subjects (P=0.0157 and P=0.0064, 

respectively). A decrease in mean 18F-FDG SUVR was associated with higher PSD theta and 

higher wSMI theta (P=0.0203 and P=0.0452, respectively). N+ subjects showed a trend towards 

higher spectral entropy (P=0.1665) and lower PSD delta (P=0.1067). As previous local 

regression suggested that amyloid load had an impact on average EEG metrics only in N+ 

subjects and not in N- subjects, we analysed the interaction between amyloid load and brain 

metabolism (Table 2 and Fig. 5). There was a significant interaction between amyloid SUVR 

and neurodegeneration status for complexity (P=0.0217), PSD beta (P=0.0348) and MSF 



(P=0.0136) and a trend towards significance for spectral entropy (P=0.0669), PSD gamma 

(P=0.0691) and PSD delta (P=0.1225). With increasing amyloid load, N+ subjects showed 

decreased complexity, MSF and PSD beta and presented a trend towards decreased spectral 

entropy, decreased PSD gamma and increased PSD delta, meaning a slowing of brain 

oscillations. N+ subjects showed a trend towards higher PSD theta in the presence of amyloid 

positivity compared to N+A- subjects (P=0.1064). In N-subjects, amyloid load did not appear 

to have an impact on average EEG metrics. If not considering the interaction between amyloid 

load and neurodegeneration, amyloid load alone did not show a significant impact on average 

EEG metrics (Table 2 and supplementary Fig. 4). This supports the fact that amyloid load has 

an impact on average EEG metrics only if associated to neurodegeneration. Results did not stay 

statistically significant after multiplicity correction on 10 EEG metrics.  

Relationship between average EEG metrics, age, gender, education, ApoE4 and 

hippocampal volume  

Men had higher average wSMI theta (FDR-corrected P<0.0001) and lower PSD delta (FDR-

corrected P=0.0256) compared to women (Table 2). No significant relationship was found 

between gender and the other EEG metrics (Supplementary Fig. 5). There was no significant 

relationship between EEG metrics and educational level, age and hippocampal volume. wSMI 

theta was higher in the presence of ApoE4 genotype (Supplementary Fig. 6) than in the absence 

of ApoE4 genotype (P=0.0493). No significant relationship was found between ApoE4 and the 

other EEG metrics. 

224 electrodes analysis: topographical differences across EEG measures and 

groups  

We evaluated topographical differences across EEG measures between the control group (A-

N-) and the three other groups (A+N+, A+N- and A-N+) (Supplementary Table 1 and Fig. 6), 

then between N+ and N- subjects (Supplementary Fig. 7) and finally between A+ and A- 

subjects (Supplementary Fig. 8). The objectives were to assess the discrimination capacity of 

the different EEG metrics between groups and to better understand the impact of amyloid and 

neurodegeneration on EEG measures. All p-values were adjusted on ApoE4 status, gender, 

education level, age and hippocampal volume.  

The A-N+ group showed maximum EEG changes compared to A-N- control group. A-N+ 

subjects had lower PSD delta in fronto-central regions and right temporal region, higher PSD 



beta, complexity, spectral entropy and wSMI theta in fronto-central regions and higher PSD 

gamma in fronto-central and temporal bilateral regions, compared to A-N- group. The A-N+ 

group presented a widespread increase of MSF in fronto-central and parieto-temporal regions. 

Thus, several EEG measures were efficient indices in discriminating A-N+ subjects from A-N- 

subjects. The A+N+ group showed only an increase in PSD gamma in left fronto-temporal 

region and a discrete increase in MSF in left temporal region, compared to A-N- group. A+N+ 

group showed a trend towards increased wSMI theta in centro-parieto-temporal regions but did 

not reach statistical significance. The A+N- group showed significantly increased wSMI alpha 

in parieto-occipital regions compared to A-N- group.  

We compared the N+ group to the N- group (Supplementary Fig. 7) and found that N+ subjects 

presented similar EEG changes than the A-N+ group (as described earlier) although the EEG 

changes were less marked. N+ subjects presented increased MSF in fronto-central and parieto-

temporal regions and increased PSD gamma in frontal and temporal bilateral regions. N+ 

subjects had a discrete diminution of PSD delta in fronto-central regions and a discrete increase 

in wSMI theta, spectral entropy and complexity in fronto-central regions. There was a trend 

toward increased PSD beta in fronto-central regions in N+ subjects but it did not reach statistical 

significance. MSF and PSD gamma were the most powerful metrics to discriminate between 

N+ and N- subjects (in Supplementary Table 1, P=0.0093 and P=0.0182 for main effects of 

MSF and PSD gamma, respectively). Although there was a significant interaction between 

amyloid status and electrodes for wSMI alpha in a linear mixed model (P<0.0001 and FDR-

corrected P=0.0003, in Supplementary Table 1), the comparison of A+ versus A- group 

(Supplementary Fig. 8) showed only a trend towards increased wSMI alpha in parieto-occipital 

regions but did not reach cluster statistical significance.  

Comparison of wSMI with “traditional” FC measures 

Results are detailed in Supplementary results. 

FC analysis at source level 

Results of FC source analysis are described in Supplementary results.  

Discussion 

To our knowledge, this is the first study to demonstrate EEG changes in preclinical AD and 

SNAP. Moreover, we have explored the effects of AD topography-specific neurodegeneration 

and amyloid-beta deposition on EEG metrics. The most prominent effects of neurodegeneration 



on EEG metrics were localized in fronto-central regions with an increase in high-frequency 

oscillations (higher beta and gamma power) and a decrease in low-frequency oscillations (lower 

delta power), higher spectral entropy, higher complexity and increased FC measured by wSMI 

in theta band. Neurodegeneration was associated to a widespread increase of MSF. 

Interestingly, in the absence of neurodegeneration, at stage 1 of preclinical AD according to 

(Sperling et al., 2011), amyloid burden did not have any impact on average EEG metrics but 

had a local effect marked by an increased FC measured by wSMI alpha in parieto-occipital 

regions. 

Importantly, in N+ subjects, we found a non-linear relationship between amyloid burden 

and EEG metrics, either following a U-shape curve for delta power or an inverted U-shape 

curve for PSD beta, PSD gamma, MSF, complexity, spectral entropy and wSMI theta. This 

means that in the presence of neurodegeneration, EEG patterns are modulated differently 

depending on the degree of severity of amyloid burden. After N+ subjects exceed a certain 

threshold of amyloid load, the whole trend of EEG metrics reverses, meaning increased delta 

power and decreased beta and gamma power, MSF, spectral entropy, complexity and wSMI in 

theta band, with an EEG pattern getting close to the one observed in MCI and clinical AD. The 

fact that N+ subjects have opposite EEG trends for intermediate amyloid load (i.e. increased 

high-frequency oscillations) and high to very high amyloid load (i.e. slowing of brain 

oscillations) can explain why A+N+ subjects showed less EEG changes than A-N+ subjects, 

with only a discrete increase of PSD gamma and MSF. Indeed, in the A+N+ group, some 

subjects have intermediate amyloid load and others have very high amyloid load, so in the 

A+N+ group some subjects have increased high-frequency oscillations and others have a 

slowing of brain oscillations; these effects going in opposite directions, in the end at A+N+ 

group level very little EEG changes are visible, while EEG changes are actually present at 

individual level.  

Therefore, it seems best to individualize two different EEG phases in neurodegeneration 

positive subjects, depending on the level of amyloid burden. We will first focus on the results 

for the first EEG phase in preclinical AD subjects presenting subthreshold to intermediate 

amyloid burden, before amyloid load exceeds a critical threshold. Increasing high frequency 

spectral power in fronto-central regions is in line with one recent study which showed a 

functional frontal upregulation revealed by an increased frontal alpha power in preclinical AD 

(Nakamura et al., 2018). Compared to this previous study, we found a frontal upregulation in 

higher frequency bands which were beta (12-30 Hz) and gamma (30-45 Hz). Increased frontal 



functional upregulation has also been shown in other studies with an increased FC in frontal 

regions (Mormino et al., 2011; Jones et al., 2016). In an inverse way we found decreased frontal 

delta power in the presence of neurodegeneration, for subthreshold amyloid SUVR. A study by 

(Nakamura et al., 2018) reported a negative correlation between regional metabolism in AD-

signature regions and frontal delta power in an amyloid-positive group which included MCI 

and CN subjects, MCI subjects showing higher frontal delta power than CN subjects. At first 

sight these results could seem discrepant with our study but can be explained first by the fact 

that we studied CN subjects only and not MCI subjects; second, we found increased delta power 

when neurodegeneration was associated to high amyloid burden, similarly to (Nakamura et al., 

2018),  thus confirming that delta power increase is a marker of disease progression within the 

Alzheimer’s disease continuum.  

The first hypothesis to explain an increase in frontal high-frequency oscillations 

concomitant with a decrease in low-frequency oscillations in neurodegeneration positive 

subjects with subthreshold to intermediate amyloid load is a compensatory mechanism, which 

was also proposed in previous studies (Mormino et al., 2011; Lim et al., 2014; Jones et al., 

2016). A sufficient level of compensation is needed to maintain normal cognitive function 

despite amyloid burden and hypometabolism in preclinical AD. Compensatory mechanisms 

would then fail once amyloid burden exceeds a certain level, explaining the reversal of EEG 

metrics trend, with a slowing of brain oscillations revealed by increased delta power and 

decreased beta and gamma power, with a spectral pattern getting close to the one typically 

found in MCI and AD. Another explanation is that as participants in INSIGHT-preAD study 

are selected on normal cognition, subjects with neurodegeneration may have a particularly high 

cognitive reserve, which is revealed by baseline higher spectral power in frontal regions, 

reduced low-frequency oscillations and higher FC (Cohen et al., 2009; Lim et al., 2014); this 

cognitive reserve would be altered as amyloid load increases, which would explain why subjects 

with neurodegeneration and very high amyloid load show slowing of brain oscillations and 

lower FC. 

We found a local increase of FC measured by wSMI alpha in parieto-occipital regions 

in subjects at stage 1 of preclinical AD. This could be explained by abnormal transient neuronal 

hyperexcitability related to Aβ deposition with a relative decrease in synaptic inhibition 

(Busche et al., 2008; Palop and Mucke, 2010; Nakamura et al., 2018). The ‘acceleration’ 

hypothesis suggests that once Aβ deposition is initiated by independent events, a milieu of 

higher FC hastens this deposition, which eventually leads to the functional disconnection or 



metabolic deterioration in the subjects with amyloid burden (Cohen et al., 2009; de Haan et al., 

2012; Johnson et al., 2014; Lim et al., 2014). The metabolic demands associated with high 

connectivity may be the detrimental phenomenon that triggers downstream cellular and 

molecular events associated with AD (Jones et al., 2016). Previous work in animal models has 

shown that intermediate levels of Aβ enhance synaptic activity presynaptically (Abramov et al., 

2009), whereas abnormally high levels of Aβ impair synaptic activity by inducing post-synaptic 

depression (Palop and Mucke, 2010). This is consistent with our results showing basically two 

different EEG phases in preclinical AD stage 2. In the early preclinical stage that is 

characterized by neurodegeneration combined with intermediate levels of Aβ, there is an 

increase in brain oscillations and FC due to compensation and/or Aβ related excitotoxicity. 

Then, the increase in brain oscillations and FC would hasten Aβ deposition. In a later preclinical 

stage characterized by neurodegeneration combined with high to very high levels of Aβ, there 

is a slowing of brain oscillations and reduced FC due to compensatory mechanisms failure 

and/or post-synaptic depression, with an EEG pattern getting close to the one observed in MCI 

and AD. The break-down of initial functional compensation would facilitate accelerated tau-

related neurodegenerative processes (Jones et al., 2017). 

To our knowledge our work is the first to study complexity and spectral entropy in 

preclinical AD subjects, coupled with metabolic evidence of neurodegeneration and Aβ 

biomarker information. The increased complexity and spectral entropy observed in frontal 

regions in the presence of neurodegeneration could also be explained by compensatory 

mechanisms. Compensation would then fail with increasing amyloid burden, with an EEG 

pattern becoming less complex and more regular, getting close to the one observed in MCI/AD 

(Hornero et al., 2009; Staudinger and Polikar, 2011; Al-Nuaimi et al., 2018).  

 One of the main strengths of our study was the use of a high-performing and practical 

EEG processing pipeline with automated artifact elimination and extraction of several validated 

EEG biomarkers. This tool avoids the need for the time-consuming manual removal of artifacts 

and the risk of possible human biases. Effective artifact removal is particularly important in a 

population of elderly subjects. Our results suggest that the EEG measures extracted with this 

pipeline can be successfully employed in a wide range of practical contexts whenever spectral 

or information-theory biomarkers are needed. wSMI has proved effective in assessing FC in 

previous studies (King et al., 2013; Sitt et al., 2014; Engemann et al., 2015, 2018) because 

unlike several traditional synchrony measures it minimizes common-source artifacts and 

provides an efficient way to detect non-linear coupling. Moreover, wSMI has already proven 



sensitive to detect aberrant networks in other neurodegenerative conditions, including 

Parkinson’s disease (Melloni et al., 2015) and behavioral variant frontotemporal dementia 

(Dottori et al., 2017). Our study supports the idea that EEG being a non-invasive, cheap and 

widely-available technique, could be used as a screening tool for identifying individuals at high 

risk of preclinical AD and future cognitive decline. Moreover, EEG biomarkers seem to be 

useful tools to measure and monitor neurodegeneration.   

Another novelty of our work is the division of our study population in four groups, based 

on amyloid and neurodegeneration criteria, in contrast to the more commonly used selection of 

individuals at risk for AD based on amyloid biomarker alone with a dichotomous classification 

of subjects as amyloid-negative or positive. First, amyloid deposition alone does not necessarily 

represent progression to clinical AD as both neuropathological and PET data show evidence of 

extensive amyloid-β pathology in CN older people (Bennett et al., 2006; Morris et al., 2010; 

Jagust, 2016). Second, it has been shown that neurodegeneration, particularly synapse loss, is 

the aspect of AD neuropathologic change that correlates most closely with symptom onset and 

cognitive decline (Soldan et al., 2016; Jack et al., 2018) and several studies using 18F-FDG PET 

showed that cerebral metabolic rate of glucose reduction predicted cognitive decline from 

normal elderly cognition to MCI/AD with a high accuracy, decliners showing greater reduction 

of 18F-FDG SUVR values (de Leon et al., 2001; Jagust et al., 2006; Mosconi et al., 2009, 2010). 

A study by (Teipel et al., 2018) found no association between cortical amyloid load and FC in 

the INSIGHT-preAD cohort, which is explainable first by the fact that authors only assessed 

the impact of amyloid load and not the effect of neurodegeneration on FC; second, they used 

Phase Lag Index to measure FC, which is affected by noise and volume conduction. The study 

of four groups of subjects depending on their amyloid and neurodegeneration status enabled us 

to explore EEG changes at different stages of preclinical AD (stage 1 and stage 2) and to study 

SNAP subjects which are also at risk of future cognitive decline (Caroli et al., 2015). Moreover, 

we were able to assess independently the effects of neurodegeneration and amyloid burden on 

EEG metrics.   

Our results showed increased wSMI theta in ApoE4 carriers. This is consistent with 

other studies showing increased FC in CN ApoE4 carriers (Filbey et al., 2006; Kramer et al., 

2008), whereas other studies found reduced brain activity in ApoE4 carriers (Lind et al., 2006) 

or no differences in FC according to ApoE genotype (Bassett et al., 2006; Nakamura et al., 

2017). We found that men had higher FC measured by wSMI theta; however, this result should 

be interpreted with caution as there was some gender imbalance between groups. Some studies 



have found higher FC in men (Allen et al., 2011; Filippi et al., 2013), whereas others have 

reported that gender has a relatively small (Bluhm et al., 2008) or lack of effect (Weissman-

Fogel et al., 2010) on resting state networks. Thus, further studies are needed to clarify the 

impact of gender and ApoE4 genotype on EEG metrics. 

 Our study presents some limitations. We divided the INSIGHT-preAD cohort into 

four groups of subjects based on 18F-florbetapir PET and 18F-FDG PET thresholds. However, 

principally for amyloid burden, this dichotomous distinction between A+ and A- categories is 

questionable as A- subjects are not necessarily completely free of amyloid, especially subjects 

that are slightly below the threshold. In the A-N+ (SNAP) group some subjects had 

subthreshold amyloid load so would be close to stage 2 of preclinical AD. In the A+N+ group 

the population was heterogeneous, as some subjects had intermediate amyloid burden and 

others had high to very high amyloid burden, making it difficult to interpret the results at A+N+ 

group level, as EEG metrics went into opposite directions depending on the degree of severity 

of amyloid burden. For that reason, we decided it was best to analyse amyloid load as a 

continuous variable and to describe two EEG phases in stage 2 of preclinical AD (for 

intermediate amyloid load and high to very high amyloid burden). Tau marker was not 

available, which is another limitation of this study, especially in regards with the recent NIA-

AA research framework (Jack et al., 2018) which stipulates that only individuals with both Aβ 

and pathologic tau biomarkers would be considered to have AD. However, it has been shown 

that there is a strong correlation between ¹⁸F-FDG PET hypometabolism in AD-signature 

regions and tau pathology, and also between hippocampal atrophy and tau pathology (Gómez-

Isla et al., 1997; Nelson et al., 2012). As in our study A+N+ subjects not only had a combination 

of high ¹⁸F-florbetapir retention and low ¹⁸F-FDG PET metabolism but also presented 

significant hippocampal volume reduction, it means that they have a high probability of 

pathologic tau deposits. We decided to do our principal analysis at scalp level and mainly use 

globally-averaged EEG measures so that the procedure would stay simple, keeping in mind that 

it could be applied as a possible routine screening tool in the future to identify individuals at 

high risk of preclinical AD. To have a better interpretation in terms of cerebral regions we did 

FC analysis at source level on four samples of subjects (Supplementary results), but due to lack 

of power, we did not evidence any significant differences in FC at source level. Source analysis 

on a larger number of subjects will need to be done in future studies. Finally, the analysis of 

longitudinal EEG data in the INSIGHT-preAD cohort will be most interesting to monitor 



evolution of EEG metrics during follow-up, especially in patients who will cognitively decline 

and evolve to prodromal AD. 

 To conclude, our work identified several EEG biomarkers that are effective indices of 

AD topography-specific neurodegeneration. As these EEG biomarkers are modulated by the 

degree of severity of amyloid load, they will possibly help to distinguish between different 

stages of preclinical AD. Our findings need to be replicated in further studies with a longitudinal 

analysis of EEG changes to finely assess the temporal evolution of these associations.  
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Figure legends: 

Figure 1: Local regression of average EEG metrics across all scalp electrodes as a function of amyloid 

SUVR. SE = spectral entropy.  

 

Figure 2: Local regression of average EEG metrics across all scalp electrodes as a function of amyloid 

SUVR for neurodegeneration positive subjects only. SE = spectral entropy. 

 

Figure 3: Local regression of average EEG metrics across all scalp electrodes as a function of mean 

FDG SUVR. FDG = fluorodeoxyglucose; SE = spectral entropy. 

 

Figure 4: Estimated marginal means from multiple linear regressions of average EEG metrics according 

to brain metabolism. Amyloid load and brain metabolism are used either as continuous or binary measures, 

depending on each EEG metric to maximize R-squared values. (A) Brain metabolism as binary measure (N+ 

vs N-). (B) Brain metabolism as continuous measure (mean FDG SUVR). Estimated marginal means and 

standard deviation are depicted; covariables in the models were: age, education level, gender, ApoE4 status, 

hippocampal volume and Florbetapir (either binary or continuous); p-values are indicated with *P < 0.05. **P 

< 0.01. n.s.: not significant. FDG = fluorodeoxyglucose; SE = spectral entropy.  

 

Figure 5: Estimated marginal means from multiple linear regressions of average EEG metrics according 

to interactions between amyloid load and brain metabolism. Amyloid load and brain metabolism are used 

either as continuous or binary measures, depending on each EEG metric to maximize R-squared values. (A) 

Interaction between amyloid SUVR and FDG status. (B) Interaction between amyloid SUVR and mean FDG 

SUVR. (C) Interaction between mean FDG SUVR and amyloid status. Estimated marginal means and standard 

deviation are depicted; covariables in the models were: age, education level, gender, ApoE4 status, 

hippocampal volume and Florbetapir (either binary or continuous); p-values are indicated with *P < 0.05. 

FDG = fluorodeoxyglucose; SE = spectral entropy.  

 

Figure 6: 224 electrodes topographical maps of EEG metrics. The topographical 2D projection (top = 

front) of each measure [normalized power spectral density in delta (δ), theta (θ), alpha (α), beta (β), gamma 

(γ), median spectral frequency (MSF), spectral entropy (SE), algorithmic complexity (K) and weighted 

symbolic mutual information in theta band and alpha band (wSMI θ and wSMI  α)] is plotted for A+N+ group, 

A-N+ group, A+N- group and control group A-N- (columns). Statistics were done on 224 electrodes by non-

parametric cluster permutation test. The three last columns indicate non-parametric cluster-based permutation 

test results for the pairwise comparisons: A+N+ vs A-N-; A-N+ vs A-N- and A+N- vs A-N- for each EEG 

metric. The topographical maps in the three last columns are color-coded according to the cluster permutation 

tests p-values (color = P<0.05, greyscale=P>0.05). Clusters of electrodes whose EEG metrics’ values are 

significantly different from the control group (A-N-) are depicted.   



 

  

Figure 1: Local regression of average EEG metrics across all scalp electrodes as a function 

of amyloid SUVR. SE = spectral entropy.  

Figure 2: Local regression of average EEG metrics across all scalp electrodes as a function of 

amyloid SUVR for neurodegeneration positive subjects only. SE = spectral entropy. 



  

Figure 3: Local regression of average EEG metrics across all scalp electrodes as a function of 

mean FDG SUVR. FDG = fluorodeoxyglucose; SE = spectral entropy. 



  

Figure 4: Estimated marginal means from multiple linear regressions of average EEG metrics 

according to brain metabolism. Amyloid load and brain metabolism are used either as continuous or 

binary measures, depending on each EEG metric to maximize R-squared values. (A) Brain metabolism as 

binary measure (N+ vs N-). (B) Brain metabolism as continuous measure (mean FDG SUVR). Estimated 

marginal means and standard deviation are depicted; covariables in the models were: age, education level, 

gender, ApoE4 status, hippocampal volume and Florbetapir (either binary or continuous); p-values are 

indicated with *P < 0.05. **P < 0.01. n.s.: not significant. FDG = fluorodeoxyglucose; SE = spectral 

entropy.  



 

  

Figure 5: Estimated marginal means from multiple linear regressions of average EEG metrics 

according to interactions between amyloid load and brain metabolism. Amyloid load and brain 

metabolism are used either as continuous or binary measures, depending on each EEG metric to 

maximize R-squared values. (A) Interaction between amyloid SUVR and FDG status. (B) Interaction 

between amyloid SUVR and mean FDG SUVR. (C) Interaction between mean FDG SUVR and amyloid 

status. Estimated marginal means and standard deviation are depicted; covariables in the models were: 

age, education level, gender, ApoE4 status, hippocampal volume and Florbetapir (either binary or 

continuous); p-values are indicated with *P < 0.05. FDG = fluorodeoxyglucose; SE = spectral entropy.  

 



 

  

Figure 6: 224 electrodes topographical maps of EEG metrics. The topographical 2D projection (top = 

front) of each measure [normalized power spectral density in delta (δ), theta (θ), alpha (α), beta (β), gamma 

(γ), median spectral frequency (MSF), spectral entropy (SE), algorithmic complexity (K) and weighted 

symbolic mutual information in theta band and alpha band (wSMI θ and wSMI  α)] is plotted for A+N+ 

group, A-N+ group, A+N- group and control group A-N- (columns). Statistics were done on 224 electrodes 

by non-parametric cluster permutation test. The three last columns indicate non-parametric cluster-based 

permutation test results for the pairwise comparisons: A+N+ vs A-N-; A-N+ vs A-N- and A+N- vs A-N- 

for each EEG metric. The topographical maps in the three last columns are color-coded according to the 

cluster permutation tests p-values (color = P<0.05, greyscale=P>0.05). Clusters of electrodes whose EEG 

metrics’ values are significantly different from the control group (A-N-) are depicted.  

 



  

Table 1: Comparison of baseline characteristics between the four groups. Data are mean ± SD or number 

(%). 
∫ 
P-value for the comparison between the four groups. P-values were calculated by a one-way Anova for 

continuous data and a Chi2 test for categorical data. Following signs indicate which groups significantly differ: 

&
 group differs from A+N-; 

#
 group differs from A+N+; 

$
 group differs from A-N+; 

£
 group differs from A-N-. 

†
18

F-fluorodeoxyglucose PET indices partial-volume corrected. §On a scale of 1–8, where 1=primary education 

and 8=higher education, high was defined as scores >6. ¶Normalized to the mean total intracranial volume. A+ 

= Amyloid positive; A- = Amyloid negative; AD = Alzheimer’s disease; APOE = Apolipoprotein E; 

N+=neurodegeneration positive; N-=neurodegeneration negative 

 



  

Table 2: Results of multiple linear regression analysis of 10 average EEG metrics on all explanatory 

variables. Adjusted coefficient of determination R-squared values (R2), p-values and Benjamini-Hochberg 

corrected p values are shown. *P < 0.05. To maximize R-squared values, for each EEG metric, FDG and 

Florbetapir were used either as continuous or binary measures. ¥ FDG as continuous measure otherwise as 

binary measure ‡ Florbetapir as continuous measure otherwise as binary measure. A+ = Amyloid positive; A- 

= Amyloid negative; ApoE = Apolipoprotein E; FDG = fluorodeoxyglucose; MSF = median spectral frequency; 

N+ = neurodegeneration positive; N- = neurodegeneration negative; SE = spectral entropy; wSMI = weighted 

symbolic mutual information. 

 



Supplementary material 

Supplementary methods 

PET acquisition and processing 

PET scans were acquired 50 min after injection of 370 MBq (10 mCi) ¹⁸F-florbetapir or 30 min after injection 

of 2 MBq/kg ¹⁸F-FDG. Reconstructed images were analysed with a pipeline developed by the Centre 

d’Acquisition et Traitement des Images (CATI) (http://cati-neuroimaging.com). For beta-amyloid ¹⁸F-

florbetapir PET images, SUVRs were calculated by averaging the mean activity of cortical regions of interest: 

left and right precuneus, cingulum posterior, cingulum anterior, and parietal, temporal, and orbito frontal 

cortices. The reference region was a combination of whole cerebellum and pons regions. In the INSIGHT-

preAD study, an SUVR threshold was set at 0.7918 for positive versus negative amyloid deposition. The 

method to determine this threshold has been described in (Dubois et al., 2018; Habert et al., 2018).  

Cortical metabolic indices on 18F-FDG PET scans were calculated in four bilateral regions of interest (ROI) 

that are specifically affected by AD (Jack et al., 2012): posterior cingulate cortex, inferior parietal lobule, 

precuneus, and inferior temporal gyrus, and the pons was used as the reference region. 96 AD patients ¹⁸F-

FDG PET scans from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohort were processed with 

the CATI pipeline and the 90th percentile of the mean SUVR of the four cortical ROIs in this AD cohort was 

used to fix a neurodegeneration cut-off value. Subjects were considered neurodegeneration positive if the 

mean ¹⁸F-FDG PET SUVR of the 4 AD-signature regions was below 2.27. 

MRI acquisition and processing 

We obtained MRI scans over a 1 h period on a 3T Magnetom VERIO system (Siemens Medical Solutions, 

Erlangen, Germany). Scanning sessions were as follows: three-dimensional T1-weighted magnetisation-

prepared rapid gradient echo; two-dimensional fluid-attenuated inversion recovery; two-dimensional T2* 

diffusion tensor imaging acquisition; T2*-weighted gradient-echo echo-planar series; and a pulsed arterial 

spin labelling scan for measurement of cerebral blood flow at rest. Hippocampal volume was measured on 

three-dimensional T1 sequences with our in-house SACHA software, normalised to the mean total intracranial 

volume.  

EEG acquisition and processing workflow 

EEG data were acquired with a high-density 256-channel EGI system (Electrical Geodesics Inc., USA) with 

a sampling rate of 250Hz and a vertex reference. The electrodes used were sponge based in order to have a 

quick application time. During the recording, patients were instructed to keep awake and relaxed. The total 

length of the recording was 2 minutes, during which participants alternated 30 seconds segments of eyes-

closed and eyes-open conditions. 60 seconds of eyes-closed resting-state recording were selected for the 

analysis.  



For EEG data processing we used a pipeline that automates processing of EEG recordings with automated 

artefact removal, extraction of EEG-measures and communication of results (Engemann et al., 2015). The 

software is written in Python, C, and bash shell scripts and is based on open source technologies, including 

the software MNE (Gramfort et al., 2013). This pipeline was first implemented as an automated solution to 

clinical diagnostics of disorders of consciousness based on statistical analysis of clinical EEG (Sitt et al., 

2014). The automated EEG data processing workflow was the following: EEG recordings were band-pass 

filtered (using a Butterworth 6th order high pass filter at 0.5 Hz and a Butterworth 8th order low pass filter at 

45 Hz). A notch filter was applied at 50 Hz and 100 Hz. Data were cut into 1 second epochs with random 

separations between 10 and 100 milliseconds between them. Channels that exceeded a 100 µv peak-to-peak 

amplitude in more than 50% of the epochs were rejected. Channels that exceeded a z-score of four across all 

the channels mean variance were rejected. This step was repeated two times. Epochs that exceeded a 100 µv 

peak-to-peak amplitude in more than 10% of the channels were rejected. Channels that exceeded a z-score of 

four across all the channels mean variance (filtered with a high pass of 25 Hz) were rejected. This step was 

repeated two times. The remaining epochs were digitally transformed to an average reference. Rejected 

channels were interpolated. 

Computation of wSMI 

The weighted Symbolic Mutual Information (wSMI) measure (King et al. 2013; Sitt et al., 2014) is based on 

the estimation of a non-linear index of information sharing between two signals. K samples of the signal 

separated by a time tau are taken into account and define a series of symbols based on the order relation 

between the magnitudes of samples. These symbols represent the temporal evolution of the signals. The 

measure is calculated for each pair of electrodes in segments of the signal (defined with a length of 1,000 ms) 

based on the marginal probability distribution functions and the joint probability density function estimated 

for the series of symbols obtained for the entire signals. wSMI is estimated for each pair of transformed EEG 

signals by estimating the joint probability of each pair of symbols. The joint probability matrix is multiplied 

by binary weights to reduce spurious correlations between signals. The weights are set to zero for pairs of 

identical symbols, which could be elicited by a unique common source, and for opposed symbols, which could 

reflect the two sides of a single electric dipole. wSMI is calculated using the following formula: 

 

𝑤𝑆𝑀𝐼(𝑋, 𝑌) =  
1

log 𝑘!
∑ ∑ 𝑤(𝑥, 𝑦) 𝑝(𝑥, 𝑦) log (

𝑝(𝑥, 𝑦)

𝑝(𝑥)𝑝(𝑦)
)

𝑦 ∈𝑌𝑥 ∈𝑋

 

 

In the formula above, k is the size of the vector used for the symbolic transformation, x and y are all symbols 

present in signals X and Y respectively, w(x,y) is the weight matrix and p(x,y) is the joint probability of co-

occurrence of symbol x in signal X and symbol y in signal Y. Finally p(x) and p(y) are the probabilities of those 



symbols in each signal. Given the interest of assessing wSMI in theta and alpha bands in our study, the wSMI 

parameters were set on tau=8 and tau=4, respectively, and k=3. 

Comparison of wSMI with “traditional” FC measures 

We compared the results of FC measured by wSMI to two additional FC metrics: Phase Locking Value (PLV) 

and weighted Phase Lag Index (wPLI), in theta and alpha frequency bands.  

PLV is a measure that quantifies the interaction between the phase component of two signals. It is defined as 

the absolute value of the mean phase difference between the two signals. Nevertheless, PLV cannot escape 

the common source problem: it is sensitive to linear mixing in which the same source can contribute to both 

signals, an intrinsic problem of EEG (Lachaux et al., 1999). An alternative measure is the Phase Lag Index 

(Stam et al., 2007). This measure is robust to the common source problem, by quantifing the asymmetry, 

discarding the phase differences that center around 0. However, this discontinuity is still affected by noise and 

volume conduction. Most recently, a related index named weighted PLI was introduced to overcome this 

problem (Vinck et al., 2011). In wPLI, the observed phase angles are weighted by the distance from the real 

axis. PLV and wPLI values where computed using MNE-Python (Gramfort et al., 2013). 

 

Statistical analyses 

We performed the same statistical analyses than for the 10 EEG metrics, but with 14 EEG metrics, the four 

additional metrics being PLV theta, PLV alpha, wPLI theta, wPLI alpha.  

To study the impact of amyloid load, brain metabolism, age, gender, educational level, ApoE4 and 

hippocampal volume on EEG metrics, we performed two types of analyses. The first analysis was on the mean 

value of each metric across all scalp (non-facial) electrodes. The second one was on the value of each metric 

at each scalp electrode so there were 224 values for each metric per participant. For wSMI, connectivity 

measures were summarized by calculating the median value from each electrode to all the other electrodes.  

Multiple models were performed to evaluate the impact of main effects and interactions. Type II tests were 

performed. P-values were corrected for multiple testing on 14 measures with the Benjamini-Hochberg False 

discovery rate (BH-FDR) procedure. Models were validated checking normal distribution of residuals, Cook’s 

distance and absence of heteroskedasticity.  

For the analysis of the mean value of each metric across all electrodes, multiple linear regressions were 

performed. Simple linear regressions were first performed to evaluate if amyloid load or brain metabolism 

should be included as categorical variables (A+, A-, N+, N-) or as continuous variables (amyloid SUVR, mean 

FDG SUVR), by maximizing the coefficient of determination R2, depending on the EEG metrics. The effects 

of interest were included in the multiple models as well as interaction between amyloid load and brain 

metabolism. 



For the analysis of the value of each metric at each electrode, linear mixed models were performed with the 

effects of interest as fixed effects as well as the electrode number and the subject as random effect. Interactions 

between amyloid load, brain metabolism and electrode number were included in the models as well as all two-

way interactions between these three effects. We performed a cluster-based permutation test with a threshold-

free cluster enhancement (TFCE, Smith and Nichols, 2009) method using MNE-Python (Gramfort et al., 2013) 

to correct for multiple comparisons on 224 electrodes and to see which electrodes showed statistically 

significant differences for pairwise comparisons between the following groups: A+N+ versus A-N-, A+N- 

versus A-N-, A-N+ versus A-N-, A+ versus A- and N+ versus N-. The first level statistics was a one-way 

ANOVA, on EEG measures partialed out from age, gender, educational level, ApoE4 and hippocampal 

volume. Neighbours were computed from the EEG montage, using the triangulation method of fieldtrip 

(Oostenveld et al., 2011), which calculates a triangulation based on a two-dimensional projection of the sensor 

position. 4096 permutations were performed. We generated scalp topographical maps using MNE-Python 

(Gramfort et al., 2013). 

Finally, we analysed the correlation between wSMI, PLV and wPLI using simple linear regressions. 

Comparison of FC matrices at source level between 4 samples of subjects 

In order to provide anatomically based interpretation of neural activity, we did a source level FC analysis on 

a random sample of 25 subjects from each of the four groups (25 A+N+, 25 A+N-, 25 A-N+, 25 A-N-), for 

wSMI, PLV, wPLI, in theta and alpha band. We used anatomical INSIGHT-preAD MRI data to do source 

reconstruction, with manual coregistration of EEG and MRI data and automatic cortical parcellation with the 

Freesurfer software (Reuter et al., 2012) based on the Desikan-Killiany atlas (Desikan et al., 2006) defining 

68 regions of interest (ROI). Time-series for each ROI where computed by averaging the time-series of the 

voxels within the ROI, after flipping the sign of sources with opposite directions. Functional connectivity was 

computed for each one of the 68 ROIs and averaged across 14 ROIs: prefrontal, frontal, temporal, central, 

parietal, occipital, cingulate, right and left. We used a linear mixed model to compare the inter-ROI mean FC 

values between the groups. P-values were adjusted on the following variables: age, gender, education level, 

ApoE4 and hippocampal volume. Subject ID was used as random effect and all others effects as fixed effects. 

Interaction between group and inter-ROI mean FC was tested. When an interaction was significant post-hoc 

tests were performed to identify the most relevant inter-ROI connections that significantly differed in weights 

between groups. P-values were corrected for multiplicity on the 91 inter-ROI connections by the BH-FDR 

procedure. P-values were reported as significant if less than 0.05. 

Supplementary results 

Comparison of wSMI with “traditional” FC measures 

Multiple linear regression of average wPLI and PLV  



We did multiple linear regression of average wPLI and PLV on all scalp electrodes to assess the impact of 

amyloid load and brain metabolism on these EEG metrics, adjusting on the following potential confounding 

variables: age, gender, education level, ApoE4 status and hippocampal volume. All p-values were adjusted on 

these cofactors (Supplementary Table 2). N+ subjects had lower PLV alpha than N- subjects (P=0.0182, FDR-

corrected P=0.0711). N+ subjects showed a trend towards lower PLV theta than N- subjects (P=0.0553, FDR-

corrected P=0.1290). There was no significant difference between N+ and N- subjects for wPLI alpha and 

wPLI theta (Supplementary Fig. 9). There was no impact of amyloid load and no interaction between amyloid 

load and neurodegeneration for PLV and wPLI in alpha and theta bands. Men had lower PLV alpha and lower 

PLV theta (FDR-corrected P<0.0001) (Supplementary Fig. 10). There was no impact of age, educational level, 

ApoE4 status and hippocampal volume on PLV and wPLI in alpha and theta bands. 

224 electrodes topographical analysis for wPLI and PLV 

We evaluated topographical differences across FC measures between the control group (A-N-) and the three 

other groups (A+N+, A+N- and A-N+) (Supplementary Table 3 and Supplementary Fig. 11), then between 

N+ and N- subjects (Supplementary Fig. 12) and finally between A+ and A- subjects (Supplementary Fig. 

12). All p-values were adjusted on ApoE4 status, gender, education level, age and hippocampal volume. P-

values were corrected for multiplicity on 224 electrodes by cluster permutation test.  

There was a main effect of neurodegeneration status for PLV alpha and PLV theta (P=0.0065, FDR-corrected 

P=0.0653 and P=0.0378, FDR-corrected P=0.1323, respectively) and a significant interaction between 

neurodegeneration status and electrodes for PLV alpha and PLV theta (FDR-corrected P<0.0001) and for 

wPLI theta (FDR-corrected P=0.0315). A-N+ subjects presented a decrease of PLV alpha and PLV theta in 

fronto-central and parieto-occipital regions compared to A-N- subjects (Supplementary Fig. 11). PLV alpha 

and PLV theta decreased in fronto-central and parieto-occipital regions in N+ subjects, compared to N- 

subjects (Supplementary Fig. 12). There was no impact of amyloid load on PLV and wPLI in alpha and theta 

bands (Supplementary Fig. 12). 

Correlation between wSMI, PLV and wPLI 

wSMI alpha was correlated with wPLI alpha (R2=0.22, p<0.001) (Supplementary Fig. 13). There was no 

correlation between wSMI alpha and PLV alpha (R2=0.01, p=0.143) and between wSMI theta and wPLI theta 

(R2=0.00, p=0.436). wSMI theta and PLV theta were anti-correlated (R2=0.17, p<0.001). Anti-correlation 

between wSMI theta and PLV theta explains why while wSMI theta increased in fronto-central regions in N+ 

subjects, PLV theta decreased in the same subjects.  

These results can be linked to the distinct information provided by each of the FC markers. It has been shown 

that wSMI has a higher sensitivity towards nonlinear interactions between signals while wPLI has optimal 

sensitivity for both linear and nonlinear interactions (Imperatori et al., 2018). On the other hand, PLV is a 

measure that is severly affected by volume conduction and common sources (Vinck et al., 2011). In contrast 

to PLV, instead of measuring basic oscillatory correlations, wSMI assesses the non-linear coupling of 



information sharing among distant networks. wSMI presents several other advantages, including a fast and 

robust estimation of the signals’ entropies and the absence of spurious correlations between EEG signals 

arising from common sources (King et al., 2013; Hesse et al., 2016). wSMI has proved effective in assessing 

FC in previous studies (King et al., 2013; Sitt et al., 2014; Engemann et al., 2015, 2018). Moreover, wSMI 

has already proven sensitive to detect aberrant networks in other neurodegenerative conditions: in Parkinson’s 

disease (Melloni et al., 2015) and behavioral variant frontotemporal dementia (Dottori et al., 2017). 

Comparison of FC matrices at source level between four samples of subjects 

In order to provide anatomically based interpretation of neural activity, we did a source level FC analysis on 

a random sample of 25 subjects from each of the four groups (all 25 A+N+, 25 random A+N-, 25 random A-

N+, 25 random A-N-), for wSMI, PLV, wPLI, in theta and alpha band. Supplementary Figures 14 and 15 

show the results of the following pairwise comparisons of FC matrices: A+N+ vs A-N-; A+N- vs A-N- and 

A-N+ vs A-N-. There was no significant difference between FC matrices after FDR correction on 91 inter-

ROI connections, neither for wSMI, PLV or wPLI. These results can be explained by a lack of power due to 

the analysis of a small random sample of subjects from each group (n=25) and multiple comparison correction 

on 91 inter-ROI connections. Source analysis on a larger number of subjects will need to be done in future 

studies. 
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